On some iterated weighted spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

Weighted Iterated Radial Composition Operators between Some Spaces of Holomorphic Functions on the Unit Ball

and Applied Analysis 3 where dV z is the Lebesgue volume measure on B. Some facts on mixed-norm spaces in various domains in C can be found, for example, in 6–8 see also the references therein . For 0 < p < ∞ the Hardy space H B H consists of all f ∈ H B such that ∥ ∥f ∥ ∥ Hp : sup 0<r<1 (∫ ∂B ∣ ∣f rζ ∣ ∣dσ ζ )1/p < ∞. 1.10 For p 2 the Hardy and the weighted Bergman space are Hilbert. Let φ be ...

متن کامل

Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces

In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.

متن کامل

Some Properties of Composition Operators on Weighted Hardy Spaces

Let φ be an analytic map of unit disk D into itself, consider the composition operator Cφ defined by Cφ(f) = f◦φ whenever f is analytic on D. In this paper, we discuss necessary and sufficient conditions under which a composition operator on a large class of weighted Hardy spaces is a compact.

متن کامل

Some inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm

Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2008

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2007.05.009